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A B S T R A C T

The global pandemic of COVID-19 has been lasting for more than one year and there is little known about the
long-term health effects of the disease. Long-COVID is a new term that is used to describe the enduring
symptoms of COVID-19 survivors. Huang et al. reported that fatigue, muscle weakness, sleep disturbances,
anxiety, and depression were the most common complaints in COVID-19 survivors after 6 months of the
infection. A recent meta-analysis showed that 80% of COVID-19 survivors have developed at least one long-
term symptom and the most common five were fatigue, headache, attention deficit disorder, hair loss, and
dyspnea. In this paper, we discuss the hypothesis that altered tryptophan absorption and metabolism could
be the main contributor to the long-term symptoms in COVID-19 survivors.

© 2021 Elsevier Inc. All rights reserved.
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Introduction

The global coronavirus disease 2019 (COVID-19) pandemic has
lasted formore than 1 y and little is known about the long-term health
effects of the disease. “Long COVID” is a new term that is used to
describe the enduring symptoms of people who have had COVID-19
[1]. Huang et al. report that fatigue, muscle weakness, sleep disturban-
ces, anxiety, and depression are the most common complaints in peo-
ple who have had COVID-19 after 6 mo of infection [2]. A recent meta-
analysis showed that 80% of people who have had COVID-19 devel-
oped at least one long-term symptom; the five most common were
fatigue, headache, attention disorder, hair loss, and dyspnea [3]. In this
article, we discuss the hypothesis that altered tryptophan absorption
andmetabolism could be themain contributor to the long-term symp-
toms in people who have had COVID-19.
L-Tryptophan metabolism

L-Tryptophan (Try) is an essential amino acid that is obtained
primarily through dietary intake in humans. Besides being a build-
ing block for protein synthesis, it serves as a precursor for some
important biological molecules such as serotonin, melatonin, and
tryptamine [4]. Only about 5% of free Try is used in the production
of proteins, neurotransmitters, and neuromodulators; the kynure-
nine (Kyn) pathway (KP) degrades the remaining more than 95%
(Fig. 1.). The conversion of Try to N-formylkynurenine is the rate-
limiting step in the KP, catalyzed by three enzymes: indoleamine
2,3-dioxygenase (IDO) 1 and 2 and tryptophan 2,3-dioxygenase
(TDO). Although the latter is found primarily in the liver, IDO is the
main extrahepatic enzyme of the KP and can be found in various
cells, including macrophages. Kynurenines (metabolites generated
in the KP) have some central roles in inflammatory and immuno-
logic responses and also been linked to psychiatric disorders such
as depression [5,6].
Tryptophan metabolism during SARS-CoV-2 infection

It is known that IDO-1 is the primary extrahepatic enzyme of
the KP and can be induced by several proinflammatory cytokines,
such as tumor necrosis factor-a, interferons, and prostaglandins.
Interferon-g is the most potent stimulator of IDO’s enzymatic
activity. That is, why IDO activity increases with inflammation like
in chronic inflammatory diseases, infections, and cancers [7]. A
number of studies suggest that IDO-1 activation is essential for the
inhibition of intracellular pathogens and tumor cells. The activated
KP in IDO-competent cells reduces inflammation and promotes
long-term immune tolerance by inducing the proliferation of regu-
latory T cells. Along with the immunoregulation effect, IDO also
works as an intracellular pathogen repressor by removing
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Fig. 1. Overview of tryptophan metabolism. IDO-1, indoleamine 2,3-dioxygenase 1; IDO-2, indoleamine 2,3-dioxygenase 2; TDO, tryptophan 2,3-dioxygenase.
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environmental tryptophan, which is required for replication of
microorganisms during infection [8�10].

Several studies have looked into changes in tryptophan metab-
olism in people infected with SARS-CoV-2 and found augmented
activation of the KP. Thomas et al. [11] conducted a metabolomic
study with the plasma of 33 participants who were positive for
SARS-CoV-2 positive and 16 negative, and determined that trypto-
phan metabolism was the leading pathway affected by COVID-19.
In those who were infected, they discovered lower levels of trypto-
phan, serotonin, and indolepyruvate, as well as higher levels of
kynurenine, kynurenic acid, picolinic acid, and nicotinic acid, all of
which were positively correlated with interleukin-6 levels. Despite
the fact that the infection group was younger than the control
group, this finding was significant because it demonstrated dis-
turbed tryptophan metabolism in people infected with SARS-CoV-
2. In a separate study, Lionetto et al. [9] compared the serum Kyn:
Try ratio—which reflects KP activation—in three groups: positive
for SARS-CoV-2, negative for SARS-CoV-2 and admitted to the
emergency department with illnesses other than COVID-19, and a
healthy control group. The SARS-CoV-2-positive group had the
highest Kyn:Try ratios. In the subgroup analysis, the SARS-CoV-2-
positive participants with the most severe outcomes had the high-
est Kyn:Try ratios. The Kyn:Try ratio was also higher in those with
severe lymphopenia, which is an ominous prognostic predictor in
COVID-19, and in males, who are thought to be more vulnerable to
infection [9]. Altered tryptophan metabolism in acute COVID-19
infection is also supported by several other studies [12,13]. It is still
unclear whether KP activation is a defense mechanism or a mecha-
nism that causes infection to flare up by inducing immune toler-
ance. Although several studies have indicated that acute COVID-19
infection causes increased KP activation, there is no evidence of
long-term effects of disturbed tryptophan metabolism in these
populations. As discussed later, kynurenines could underlie long-
COVID symptoms.

KP and long-COVID symptoms

As discussed before, the most commonly seen long-term symp-
toms in people who have had COVID-19 are depression, fatigue,
sleep disturbances, attention disorders, anxiety, muscle weakness,
and dyspnea. When taken together, KP activation may also contrib-
ute these symptoms.

The “kynurenine shunt” refers to the increased degradation of
tryptophan toward kynurenine and away from serotonin produc-
tion [14]. Increased IDO activity has been related to depression in
studies, owing to both serotonin depletion and neurotoxic effects
of KP metabolites [15]. Fatigue, the most common long-term
symptom in people who have had COVID-19, is divided into central
and peripheral fatigue, with central fatigue causing complex weak-
ness and making recovery difficult [16]. Several studies have
revealed that increased metabolites of the KP in the brain trigger
central fatigue and memory issues by inducing neurotoxicity
[17�20]. The long-term symptoms seen in COVID-19 infection
could be related to the kynurenine shunt. Although there has been
evidence of increased KP activation in acute COVID-19, there is no
evidence in long-term COVID-19 survivors. Studies in this area can
aid in our understanding of the pathophysiology underlying
COVID-19’s long-term symptoms.

Angiotensin-converting enzyme 2 and tryptophan absorption

COVID-19 has the ability to cause Try malabsorption in addition
to disrupting Try metabolism. It is known that SARS-CoV-2 uses
angiotensin-converting enzyme 2 (ACE2) as a receptor and that
ACE2 expression is abundant in the intestines. When SARS-CoV-2
infects the intestines, it disrupts the expression of ACE2 in the gas-
trointestinal system [21]. ACE2 is required for the expression of
intestinal B0AT1, which is a neutral amino acid transporter in the
intestinal lumen. Therefore, there could be a relatively neutral
amino acid malabsorption in case of diminished ACE2 expression
in the intestines. It has been evidenced that plasma tryptophan lev-
els significantly decline in ACE2-lacking mice [22].

L-Tryptophan is the main precursor of serotonin and other neu-
rotransmitters which have a key role in the pathogenesis of
depression and anxiety. Previous studies have shown that brain
serotonin levels are low in ACE2-deficient mice [23]. Acute trypto-
phan depletion in rodents decreased tryptophan levels in the brain
by up to 70%, resulting in lower central serotonin levels in the brain
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and causing inhibition of serotonin synthesis in humans. Acute
tryptophan depletion has also been linked to mood disturbances,
especially in people who are prone to depression [24�26]. Melato-
nin, one of the end products of Try, plays an important role in sleep
control as well as immune response. Try deficiency has been
shown to reduce rapid-eye-movement latency and lengthen rapid-
eye-movement sleep [27,28]. On the other hand, tryptophan also
plays a major role in skeletal muscle mass regulation. Ninomiya
et al. found that skeletal muscle mass in people with lymphoma
was closely associated with serum tryptophan levels. Moreover,
they revealed that there was a reversible muscle loss in mice fed a
tryptophan-deficient diet [29]. In addition to lung damage, long-
term dyspnea from COVID-19 may be caused by weakness of the
diaphragmmuscle due to relative tryptophan deficiency.

Conclusion

In conclusion, SARS-CoV-2 infection causes long-term dysregu-
lation of Try absorption from the intestines due to an ACE2 imbal-
ance in the gastrointestinal system. Furthermore, Try metabolism
is disturbed in favor of the KP. Low serum and muscle tryptophan
levels, as well as elevated kynurenine levels, may be to blame for
COVID-19’s most common long-term symptoms, such as depres-
sion, sleep disturbances, fatigue, and muscle weakness—which are
similar to the symptoms of tryptophan deficiency. It is unknown
whether the severity of gastrointestinal symptoms during acute
infection or tryptophan supplementation have an influence on the
long-term health effects of COVID-19.

We propose that COVID-19-related alteration in Try absorption
and metabolism could be the underlying pathophysiology of long-
COVID symptoms. People who have had COVID-19 should be eval-
uated for nutritional status and levels of tryptophan and its metab-
olites in the long term.
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